

Leveraging Similarity Joins for Signal Reconstruction

Abolfazl Asudeh | Azade Nazi | **Jees Augustine** | Saravanan Thirumuruganathan | Nan Zhang | Gautam Das | Divesh Srivastava

Problem Formulation

Contribution

Algorithms

Problem Formulation

Contribution

Algorithms

Given any traffic routing matrix and aggregated link level flow information, can we effectively infer the individual flow values(S_1D_1 , S_1D_2 , ..., S_3D_3)?

Scope of Problem High Dimensional Signal

1

3D image reconstruction from 2D images

Accurate temperature estimate from limited temperature sensors

Problem Formulation

Contribution

Algorithms

Signal Reconstruction Problem(SRP)

$$\mathcal{A} \cdot \mathcal{X} \to b$$

Existing Solutions

- Compressive Sensing
 - Assume that most of signal elements are zeros(0), this sparsity could lead to reconstruction with fewer samples
 - Large Time requirement
 - Large error in answers

 $\Lambda: \mathcal{X} \to h$

Can we do better with some prior information about the signal !

Problem Formulation

Contribution

Algorithms

Contributions

- Derived the Lagrangian Dual form of the problem and proposed DIRECT-Exact algorithm
- Identified computational bottleneck
- Leveraged Database techniques for Optimized DIRECT-Approximate as a scalable solution using set similarity join techniques
- Performed Extensive Experiments to confirm the efficiency and accuracy

Problem Formulation

Contribution

Algorithms

Lagrangian Dual Expression

- Any general optimization problem in the form of $\min \ f(X)$ $s.t. \ g(X) = b$
- Can be rewritten as

$$L(X,\lambda) = f(X) + \lambda^T (g(X) - b)$$

$$L(X,\lambda) = \frac{1}{2}X^T X - X'^T X + \lambda^T (AX - b)$$

Optimizing computation of AA^T

• Sparse representation of A & A^{T}

1	2	3	4	5	6	7
0	0	1	0	0	1	0
0	1	0	0	0	0	0
0	0	0	1	0	1	1
1	0	0	0	1	0	0

< 3, 6 >				
< 2 >				
< 4, 6, 7 >				
< 1, 5 >				

Approximation: Trading off Accuracy with Efficiency

Bounding Values in AA^T

 AA^T Small number of entries take bulk of the values

Threshold based on the diagonal values

Direct Approx – Threshold Based

Matrix Multiplication

Matrix Multiplication

Set Similarity Joins

Set Similarity

• Used - data cleaning, deduplication, product recommendation

• Identify tuples, which are 'close enough', on multiple attributes

Designed Algorithm SIM

Threshold Based – Set Similarity Join

- Surajit Chaudhuri et.al.
- If intersection of two sets are large
 - Intersection of small subsets of them are non-zero

Sketch Based - Set Similarity Join

- Uses Min-hashing
 - Use a random ordering of all items in universe
 - Min-hash = element with the minimum hash value

• Jaccard Similarity of two sets A and B, J(A, B) =
$$\frac{|A \cap B|}{|A \cup B|}$$

P(h[A] = h[B]) = J(A, B)

Sketch Based - Set Similarity Join

- Bottom-k sketch
 - Uses only first k elements of the hash
- Works well for large size sets

Algorithm SIM

if $|U_i| \ge \log(m)$ and $|U_j| \ge \log(m)$ then

—apply bottom-k sketch based estimation

$$- E[\cap_{i,j}] = \frac{k_{\cap}(i,j)}{k} \frac{m(k-1)}{h_{i,j}[k]}$$

else

—apply threshold-based estimation

Problem Formulation

Contribution

Algorithms

Evaluation Setup

- Implementation: Matlab & Python2.7
- Synthetic Datasets: constructed as a random, Erdos-Renyi graph(Networkx)
- P2P dataset from SANP dataset of Stanford
 - 10786 Nodes & 39994 Edges

Direct VS Baselines

Direct-Exact VS Direct-Approximate

