
Leveraging Similarity Joins for 
Signal Reconstruction

Abolfazl Asudeh | Azade Nazi |Jees Augustine | Saravanan Thirumuruganathan | 
Nan Zhang | Gautam Das | Divesh Srivastava

DBXLab



Motivation

Problem Formulation

Contribution

Algorithms

Experiments & Evaluation
2

DBXLab



Motivation

Problem Formulation

Contribution

Algorithms

Experiments & Evaluation
3

DBXLab



DBXLab Motivation
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Given any traffic routing matrix and aggregated link 
level flow information, can we effectively infer the 

individual flow values(S1D1, S1D2, … S3D3 )?



DBXLab Scope of Problem High Dimensional Signal 
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3D image reconstruction from 2D images1

Accurate temperature estimate from limited temperature sensors2
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DBXLab Problem Representation
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DBXLab Signal Reconstruction Problem(SRP)

A · X ! b
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X: SD Traffic Vector
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DBXLab Existing Solutions

• Compressive Sensing 
• Assume that most of signal elements are zeros(0), this sparsity 

could lead to reconstruction with fewer samples
• Large Time requirement 
• Large error in answers

A · X ! b
<latexit sha1_base64="ZEelaDT6oa6ijEPty8yMZaONEAk="></latexit><latexit sha1_base64="ZEelaDT6oa6ijEPty8yMZaONEAk="></latexit><latexit sha1_base64="ZEelaDT6oa6ijEPty8yMZaONEAk="></latexit><latexit sha1_base64="ZEelaDT6oa6ijEPty8yMZaONEAk="></latexit>

Can we do better with some prior information about the signal ! 
9
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DBXLab Contributions
• Derived the Lagrangian Dual form of the problem and proposed 

DIRECT-Exact algorithm

• Identified computational bottleneck

• Leveraged Database techniques for Optimized DIRECT-Approximate as 
a scalable solution using set similarity join techniques

• Performed Extensive Experiments to confirm the efficiency and 
accuracy 
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DBXLab Lagrangian Dual Expression
• Any general optimization problem in the form of

• Can be rewritten as 
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DBXLab
Direct

Routing Matrix

A X’b X
15



DBXLab
Optimizing computation of AAT
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• Sparse representation of A & AT



Approximation: Trading off 
Accuracy with Efficiency
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DBXLab
Bounding Values in AAT
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DBXLab
Direct Approx – Threshold Based
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DBXLab Matrix Multiplication 
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DBXLab Matrix Multiplication 
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Set Similarity Joins
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DBXLab
Set Similarity

• Used - data cleaning, deduplication, product recommendation

• Identify tuples, which are ‘close enough’, on multiple attributes

23

Designed Algorithm SIM



DBXLab
Threshold Based – Set Similarity Join

• Surajit Chaudhuri et.al.

• If intersection of two sets are large 
• Intersection of small subsets of them are non-zero 
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DBXLab
Sketch Based - Set Similarity Join

• Uses Min-hashing

• Use a random ordering of all items in universe

• Min-hash = element with the minimum hash value 

• Jaccard Similarity of two sets A and B, J(A, B)  = 

25

P(h[A] = h[B]) = J(A, B)



DBXLab
Sketch Based - Set Similarity Join

• Bottom-k sketch

• Uses only first k elements of the hash

• Works well for large size sets

26
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DBXLab
Algorithm SIM
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set of h�⌧ +1. In the second step, the algorithm verifies the pairs,
by removing the false positives.

One can see the effectiveness of this method highly depends on
the value of ⌧ and, considering the target application, it works well
for the cases that ⌧ is large. For example, consider a case where
h = 100. When ⌧ = 99 (i.e., 99% similarity), the first filtering step
needs to compare the subsets of size 2 and is efficient; whereas if
⌧ = 10, the filtering step needs to compare the subset pairs of size
90, which is close to the entire set. The later case is quite possible
in our problem. To understand it better, let us consider matrix A in
Figure 3, while setting ⌧ equal to 5 in Algorithm 3. Even though
the size of many of the rows is close to the threshold, there are
rows A[i] where |A[i]| is significantly larger than it. For example,
for two rows A[i] and A[j] where |A[i]| � 50 and |A[j]| � 50,
to satisfy the dot product be not less than ⌧ , the filtering step needs
to compare the subsets of size � 44, which is close to the exact
comparison of A[i] and A[j].

Approximate Approach : Sketch based Algorithms. Sketch based
methods such as [1, 10, 12, 22] use precomputed synopsis such as
a minhash for answering different set aggregates such as Jaccard
similarity. The main idea behind the min-hashing [5] based algo-
rithms is as following: consider a hash (ordering) of the elements
in U . For each set Ui, let hmin(Ui) be the element o 2 Ui that
has the minimum hash value. Two sets Ui and Uj have the same
min-hash, when the element with the smallest hash value belongs
to their intersection. Hence, it is easy to see that the probability that
hmin(Ui) = hmin(Uj) is equal to \i,j

[i,j
, i.e., Jaccard similarity of

Ui and Uj . Bottom-k sketch [10], a variant of min-hashing picks
the hash of the k elements in Ui with the smallest hash value, as its
signature. The Jaccard similarity of two sets Ui and Uj is estimated
as k\(i,j)

k , where k\(i, j) is |hk(Ui) \ hk(Uj)|. Bayer et al. [1]
use the bottom-k sketch for estimating the union and intersection
of the sets. Let hi,j [k] be the hash value of the k-th smallest hash
value in hk(Ui) [ hk(Uj). The idea is that the larger the size of a
set is, the smaller the expected value of the k-th element in hash is.
Using the results of [1], m(k�1)

hi,j [k]
is an unbiased estimator for [i,j .

Hence the estimation for \i,j is as provided in Equation 13.

E[\i,j ] =
k\(i, j)

k

m(k � 1)
hi,j [k]

(13)

Estimating [i,j with Equation 13, performs well when [i,j �
1 [1], i.e., the larger sets. Hence, we combine the threshold-based
and sketch-based algorithms to design the oracle SIM, as a hybrid
method that, based on the sizes of the rows A[i] and A[j], adopts
the threshold-based computation with sketch-based estimation for
computing the dot product of A[i] and A[j]. We consider log(m)
as the threshold to decide which strategy to adopt. Considering the
effectiveness of threshold based approaches when Ui and Uj are
small and, as a result, the two sets need a large overlap to have the
intersection larger than ⌧ , if |Ui| and |Uj | are less than log(m),
we choose the threshold-based intersection computation. However,
if the size of Ui or Uj is more then we use the bottom-k sketch,
while considering k to be log(m). For each element oj 2 U, we
set h(oj) = j. Hence, for each vector Ui the index of the first
log(m) elements in it are its bottom-k sketch. Using this strategy,
Algorithm 4 shows the pseudo code of the oracle SIM.

Given two given sets Ui and Uj (corresponding for the rows A[i]
and A[j]) together with the threshold ⌧ , the algorithm aims to com-
pute the value of \i,j , if it is larger than ⌧ . Combining the two
aforementioned methods, if |Ui| and |Uj | are more than a value ↵,
the algorithm uses sampling to estimate \i,j , otherwise it applies
the threshold-based method to compute it. During the sampling,
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Figure 6: Illustration of the flow passing through a network N3 in Ta-
ble 1

rather than sampling from U , the algorithm samples from Ui to re-
duce the underestimation of probability. In this case, in order to
compute \i,j , the algorithm, for each sample, picks a random ob-
ject from Ui and check its existence in Uj . It is easy to see it is
an unbiased estimator for \i,j , where its expected value is \i,j . If
|Ui| or |Uj | is less than ↵, the algorithms applies threshold-based
strategy for computing \i,j . As discussed earlier in this subsection,
in order for \i,j to be more than ⌧ , the subsets of size \i,j � ⌧ +1
should intersect. Hence, the algorithm first applies the threshold
filtering and only if the two subsets intersect it continues with com-
puting \i,j .
Algorithm 4 SIM
Input: the sets Ui and Uj , Threshold ⌧

Output: c
1: if |Ui| � log(m) and |Uj | � log(m) then
2: // apply bottom-k sketch based estimation

3: hi = the first k elements in Ui

4: hj = the first k elements in Uj

5: k\(i, j) = |hi \ hj |
6: hi,j [k] = the first k elements in hi [ hj

7: c = k\(i,j)
k

m(k�1)
hi,j [k]

8: else
9: // apply threshold-based estimation

10: c = 0
11: if |Ui| > |Uj | then swap Ui and Uj

12: � = |Ui|� ⌧

13: for k = 0 to � do
14: if Ui[k] 2 Uj then c = c+ 1
15: end for
16: if c = 0 then return 0
17: for k = � to |Ui|� 1 do
18: if Ui[k] 2 Uj then c = c+ 1
19: end for
20: end if
21: return c

Performance Analysis. Algorithm 3 has a time complexity of
O(n+ µ

2 min(l, log(m))), where µ = |{A[i]| |A[i]| � ⌧}|.

5. DISCUSSIONS

5.1 Identifying Top-k Components of Recon-
structed Signal

A natural extension to the signal reconstruction problem is to
identify the top-k components of the reconstructed signal. Of course,
a naive approach would use DIRECT to compute the signal X and
simply pick the top-k values. While top-k has been studied exten-
sively in the DB community, there has been a paucity of work in

set of h�⌧ +1. In the second step, the algorithm verifies the pairs,
by removing the false positives.

One can see the effectiveness of this method highly depends on
the value of ⌧ and, considering the target application, it works well
for the cases that ⌧ is large. For example, consider a case where
h = 100. When ⌧ = 99 (i.e., 99% similarity), the first filtering step
needs to compare the subsets of size 2 and is efficient; whereas if
⌧ = 10, the filtering step needs to compare the subset pairs of size
90, which is close to the entire set. The later case is quite possible
in our problem. To understand it better, let us consider matrix A in
Figure 3, while setting ⌧ equal to 5 in Algorithm 3. Even though
the size of many of the rows is close to the threshold, there are
rows A[i] where |A[i]| is significantly larger than it. For example,
for two rows A[i] and A[j] where |A[i]| � 50 and |A[j]| � 50,
to satisfy the dot product be not less than ⌧ , the filtering step needs
to compare the subsets of size � 44, which is close to the exact
comparison of A[i] and A[j].

Approximate Approach : Sketch based Algorithms. Sketch based
methods such as [1, 10, 12, 22] use precomputed synopsis such as
a minhash for answering different set aggregates such as Jaccard
similarity. The main idea behind the min-hashing [5] based algo-
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Estimating [i,j with Equation 13, performs well when [i,j �
1 [1], i.e., the larger sets. Hence, we combine the threshold-based
and sketch-based algorithms to design the oracle SIM, as a hybrid
method that, based on the sizes of the rows A[i] and A[j], adopts
the threshold-based computation with sketch-based estimation for
computing the dot product of A[i] and A[j]. We consider log(m)
as the threshold to decide which strategy to adopt. Considering the
effectiveness of threshold based approaches when Ui and Uj are
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Figure 6: Illustration of the flow passing through a network N3 in Ta-
ble 1

rather than sampling from U , the algorithm samples from Ui to re-
duce the underestimation of probability. In this case, in order to
compute \i,j , the algorithm, for each sample, picks a random ob-
ject from Ui and check its existence in Uj . It is easy to see it is
an unbiased estimator for \i,j , where its expected value is \i,j . If
|Ui| or |Uj | is less than ↵, the algorithms applies threshold-based
strategy for computing \i,j . As discussed earlier in this subsection,
in order for \i,j to be more than ⌧ , the subsets of size \i,j � ⌧ +1
should intersect. Hence, the algorithm first applies the threshold
filtering and only if the two subsets intersect it continues with com-
puting \i,j .
Algorithm 4 SIM
Input: the sets Ui and Uj , Threshold ⌧

Output: c
1: if |Ui| � log(m) and |Uj | � log(m) then
2: // apply bottom-k sketch based estimation

3: hi = the first k elements in Ui

4: hj = the first k elements in Uj

5: k\(i, j) = |hi \ hj |
6: hi,j [k] = the first k elements in hi [ hj

7: c = k\(i,j)
k

m(k�1)
hi,j [k]

8: else
9: // apply threshold-based estimation

10: c = 0
11: if |Ui| > |Uj | then swap Ui and Uj

12: � = |Ui|� ⌧

13: for k = 0 to � do
14: if Ui[k] 2 Uj then c = c+ 1
15: end for
16: if c = 0 then return 0
17: for k = � to |Ui|� 1 do
18: if Ui[k] 2 Uj then c = c+ 1
19: end for
20: end if
21: return c

Performance Analysis. Algorithm 3 has a time complexity of
O(n+ µ
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5. DISCUSSIONS
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structed Signal

A natural extension to the signal reconstruction problem is to
identify the top-k components of the reconstructed signal. Of course,
a naive approach would use DIRECT to compute the signal X and
simply pick the top-k values. While top-k has been studied exten-
sively in the DB community, there has been a paucity of work in

set of h�⌧ +1. In the second step, the algorithm verifies the pairs,
by removing the false positives.

One can see the effectiveness of this method highly depends on
the value of ⌧ and, considering the target application, it works well
for the cases that ⌧ is large. For example, consider a case where
h = 100. When ⌧ = 99 (i.e., 99% similarity), the first filtering step
needs to compare the subsets of size 2 and is efficient; whereas if
⌧ = 10, the filtering step needs to compare the subset pairs of size
90, which is close to the entire set. The later case is quite possible
in our problem. To understand it better, let us consider matrix A in
Figure 3, while setting ⌧ equal to 5 in Algorithm 3. Even though
the size of many of the rows is close to the threshold, there are
rows A[i] where |A[i]| is significantly larger than it. For example,
for two rows A[i] and A[j] where |A[i]| � 50 and |A[j]| � 50,
to satisfy the dot product be not less than ⌧ , the filtering step needs
to compare the subsets of size � 44, which is close to the exact
comparison of A[i] and A[j].

Approximate Approach : Sketch based Algorithms. Sketch based
methods such as [1, 10, 12, 22] use precomputed synopsis such as
a minhash for answering different set aggregates such as Jaccard
similarity. The main idea behind the min-hashing [5] based algo-
rithms is as following: consider a hash (ordering) of the elements
in U . For each set Ui, let hmin(Ui) be the element o 2 Ui that
has the minimum hash value. Two sets Ui and Uj have the same
min-hash, when the element with the smallest hash value belongs
to their intersection. Hence, it is easy to see that the probability that
hmin(Ui) = hmin(Uj) is equal to \i,j
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, i.e., Jaccard similarity of

Ui and Uj . Bottom-k sketch [10], a variant of min-hashing picks
the hash of the k elements in Ui with the smallest hash value, as its
signature. The Jaccard similarity of two sets Ui and Uj is estimated
as k\(i,j)

k , where k\(i, j) is |hk(Ui) \ hk(Uj)|. Bayer et al. [1]
use the bottom-k sketch for estimating the union and intersection
of the sets. Let hi,j [k] be the hash value of the k-th smallest hash
value in hk(Ui) [ hk(Uj). The idea is that the larger the size of a
set is, the smaller the expected value of the k-th element in hash is.
Using the results of [1], m(k�1)

hi,j [k]
is an unbiased estimator for [i,j .

Hence the estimation for \i,j is as provided in Equation 13.
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Estimating [i,j with Equation 13, performs well when [i,j �
1 [1], i.e., the larger sets. Hence, we combine the threshold-based
and sketch-based algorithms to design the oracle SIM, as a hybrid
method that, based on the sizes of the rows A[i] and A[j], adopts
the threshold-based computation with sketch-based estimation for
computing the dot product of A[i] and A[j]. We consider log(m)
as the threshold to decide which strategy to adopt. Considering the
effectiveness of threshold based approaches when Ui and Uj are
small and, as a result, the two sets need a large overlap to have the
intersection larger than ⌧ , if |Ui| and |Uj | are less than log(m),
we choose the threshold-based intersection computation. However,
if the size of Ui or Uj is more then we use the bottom-k sketch,
while considering k to be log(m). For each element oj 2 U, we
set h(oj) = j. Hence, for each vector Ui the index of the first
log(m) elements in it are its bottom-k sketch. Using this strategy,
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rather than sampling from U , the algorithm samples from Ui to re-
duce the underestimation of probability. In this case, in order to
compute \i,j , the algorithm, for each sample, picks a random ob-
ject from Ui and check its existence in Uj . It is easy to see it is
an unbiased estimator for \i,j , where its expected value is \i,j . If
|Ui| or |Uj | is less than ↵, the algorithms applies threshold-based
strategy for computing \i,j . As discussed earlier in this subsection,
in order for \i,j to be more than ⌧ , the subsets of size \i,j � ⌧ +1
should intersect. Hence, the algorithm first applies the threshold
filtering and only if the two subsets intersect it continues with com-
puting \i,j .
Algorithm 4 SIM
Input: the sets Ui and Uj , Threshold ⌧

Output: c
1: if |Ui| � log(m) and |Uj | � log(m) then
2: // apply bottom-k sketch based estimation

3: hi = the first k elements in Ui

4: hj = the first k elements in Uj

5: k\(i, j) = |hi \ hj |
6: hi,j [k] = the first k elements in hi [ hj

7: c = k\(i,j)
k
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9: // apply threshold-based estimation
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11: if |Ui| > |Uj | then swap Ui and Uj

12: � = |Ui|� ⌧

13: for k = 0 to � do
14: if Ui[k] 2 Uj then c = c+ 1
15: end for
16: if c = 0 then return 0
17: for k = � to |Ui|� 1 do
18: if Ui[k] 2 Uj then c = c+ 1
19: end for
20: end if
21: return c

Performance Analysis. Algorithm 3 has a time complexity of
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2 min(l, log(m))), where µ = |{A[i]| |A[i]| � ⌧}|.
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5.1 Identifying Top-k Components of Recon-
structed Signal

A natural extension to the signal reconstruction problem is to
identify the top-k components of the reconstructed signal. Of course,
a naive approach would use DIRECT to compute the signal X and
simply pick the top-k values. While top-k has been studied exten-
sively in the DB community, there has been a paucity of work in

set of h�⌧ +1. In the second step, the algorithm verifies the pairs,
by removing the false positives.

One can see the effectiveness of this method highly depends on
the value of ⌧ and, considering the target application, it works well
for the cases that ⌧ is large. For example, consider a case where
h = 100. When ⌧ = 99 (i.e., 99% similarity), the first filtering step
needs to compare the subsets of size 2 and is efficient; whereas if
⌧ = 10, the filtering step needs to compare the subset pairs of size
90, which is close to the entire set. The later case is quite possible
in our problem. To understand it better, let us consider matrix A in
Figure 3, while setting ⌧ equal to 5 in Algorithm 3. Even though
the size of many of the rows is close to the threshold, there are
rows A[i] where |A[i]| is significantly larger than it. For example,
for two rows A[i] and A[j] where |A[i]| � 50 and |A[j]| � 50,
to satisfy the dot product be not less than ⌧ , the filtering step needs
to compare the subsets of size � 44, which is close to the exact
comparison of A[i] and A[j].

Approximate Approach : Sketch based Algorithms. Sketch based
methods such as [1, 10, 12, 22] use precomputed synopsis such as
a minhash for answering different set aggregates such as Jaccard
similarity. The main idea behind the min-hashing [5] based algo-
rithms is as following: consider a hash (ordering) of the elements
in U . For each set Ui, let hmin(Ui) be the element o 2 Ui that
has the minimum hash value. Two sets Ui and Uj have the same
min-hash, when the element with the smallest hash value belongs
to their intersection. Hence, it is easy to see that the probability that
hmin(Ui) = hmin(Uj) is equal to \i,j

[i,j
, i.e., Jaccard similarity of

Ui and Uj . Bottom-k sketch [10], a variant of min-hashing picks
the hash of the k elements in Ui with the smallest hash value, as its
signature. The Jaccard similarity of two sets Ui and Uj is estimated
as k\(i,j)

k , where k\(i, j) is |hk(Ui) \ hk(Uj)|. Bayer et al. [1]
use the bottom-k sketch for estimating the union and intersection
of the sets. Let hi,j [k] be the hash value of the k-th smallest hash
value in hk(Ui) [ hk(Uj). The idea is that the larger the size of a
set is, the smaller the expected value of the k-th element in hash is.
Using the results of [1], m(k�1)

hi,j [k]
is an unbiased estimator for [i,j .

Hence the estimation for \i,j is as provided in Equation 13.

E[\i,j ] =
k\(i, j)

k

m(k � 1)
hi,j [k]

(13)

Estimating [i,j with Equation 13, performs well when [i,j �
1 [1], i.e., the larger sets. Hence, we combine the threshold-based
and sketch-based algorithms to design the oracle SIM, as a hybrid
method that, based on the sizes of the rows A[i] and A[j], adopts
the threshold-based computation with sketch-based estimation for
computing the dot product of A[i] and A[j]. We consider log(m)
as the threshold to decide which strategy to adopt. Considering the
effectiveness of threshold based approaches when Ui and Uj are
small and, as a result, the two sets need a large overlap to have the
intersection larger than ⌧ , if |Ui| and |Uj | are less than log(m),
we choose the threshold-based intersection computation. However,
if the size of Ui or Uj is more then we use the bottom-k sketch,
while considering k to be log(m). For each element oj 2 U, we
set h(oj) = j. Hence, for each vector Ui the index of the first
log(m) elements in it are its bottom-k sketch. Using this strategy,
Algorithm 4 shows the pseudo code of the oracle SIM.

Given two given sets Ui and Uj (corresponding for the rows A[i]
and A[j]) together with the threshold ⌧ , the algorithm aims to com-
pute the value of \i,j , if it is larger than ⌧ . Combining the two
aforementioned methods, if |Ui| and |Uj | are more than a value ↵,
the algorithm uses sampling to estimate \i,j , otherwise it applies
the threshold-based method to compute it. During the sampling,
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Figure 6: Illustration of the flow passing through a network N3 in Ta-
ble 1

rather than sampling from U , the algorithm samples from Ui to re-
duce the underestimation of probability. In this case, in order to
compute \i,j , the algorithm, for each sample, picks a random ob-
ject from Ui and check its existence in Uj . It is easy to see it is
an unbiased estimator for \i,j , where its expected value is \i,j . If
|Ui| or |Uj | is less than ↵, the algorithms applies threshold-based
strategy for computing \i,j . As discussed earlier in this subsection,
in order for \i,j to be more than ⌧ , the subsets of size \i,j � ⌧ +1
should intersect. Hence, the algorithm first applies the threshold
filtering and only if the two subsets intersect it continues with com-
puting \i,j .
Algorithm 4 SIM
Input: the sets Ui and Uj , Threshold ⌧

Output: c
1: if |Ui| � log(m) and |Uj | � log(m) then
2: // apply bottom-k sketch based estimation

3: hi = the first k elements in Ui

4: hj = the first k elements in Uj

5: k\(i, j) = |hi \ hj |
6: hi,j [k] = the first k elements in hi [ hj

7: c = k\(i,j)
k

m(k�1)
hi,j [k]

8: else
9: // apply threshold-based estimation

10: c = 0
11: if |Ui| > |Uj | then swap Ui and Uj

12: � = |Ui|� ⌧

13: for k = 0 to � do
14: if Ui[k] 2 Uj then c = c+ 1
15: end for
16: if c = 0 then return 0
17: for k = � to |Ui|� 1 do
18: if Ui[k] 2 Uj then c = c+ 1
19: end for
20: end if
21: return c

Performance Analysis. Algorithm 3 has a time complexity of
O(n+ µ

2 min(l, log(m))), where µ = |{A[i]| |A[i]| � ⌧}|.

5. DISCUSSIONS

5.1 Identifying Top-k Components of Recon-
structed Signal

A natural extension to the signal reconstruction problem is to
identify the top-k components of the reconstructed signal. Of course,
a naive approach would use DIRECT to compute the signal X and
simply pick the top-k values. While top-k has been studied exten-
sively in the DB community, there has been a paucity of work in

set of h�⌧ +1. In the second step, the algorithm verifies the pairs,
by removing the false positives.

One can see the effectiveness of this method highly depends on
the value of ⌧ and, considering the target application, it works well
for the cases that ⌧ is large. For example, consider a case where
h = 100. When ⌧ = 99 (i.e., 99% similarity), the first filtering step
needs to compare the subsets of size 2 and is efficient; whereas if
⌧ = 10, the filtering step needs to compare the subset pairs of size
90, which is close to the entire set. The later case is quite possible
in our problem. To understand it better, let us consider matrix A in
Figure 3, while setting ⌧ equal to 5 in Algorithm 3. Even though
the size of many of the rows is close to the threshold, there are
rows A[i] where |A[i]| is significantly larger than it. For example,
for two rows A[i] and A[j] where |A[i]| � 50 and |A[j]| � 50,
to satisfy the dot product be not less than ⌧ , the filtering step needs
to compare the subsets of size � 44, which is close to the exact
comparison of A[i] and A[j].

Approximate Approach : Sketch based Algorithms. Sketch based
methods such as [1, 10, 12, 22] use precomputed synopsis such as
a minhash for answering different set aggregates such as Jaccard
similarity. The main idea behind the min-hashing [5] based algo-
rithms is as following: consider a hash (ordering) of the elements
in U . For each set Ui, let hmin(Ui) be the element o 2 Ui that
has the minimum hash value. Two sets Ui and Uj have the same
min-hash, when the element with the smallest hash value belongs
to their intersection. Hence, it is easy to see that the probability that
hmin(Ui) = hmin(Uj) is equal to \i,j

[i,j
, i.e., Jaccard similarity of

Ui and Uj . Bottom-k sketch [10], a variant of min-hashing picks
the hash of the k elements in Ui with the smallest hash value, as its
signature. The Jaccard similarity of two sets Ui and Uj is estimated
as k\(i,j)

k , where k\(i, j) is |hk(Ui) \ hk(Uj)|. Bayer et al. [1]
use the bottom-k sketch for estimating the union and intersection
of the sets. Let hi,j [k] be the hash value of the k-th smallest hash
value in hk(Ui) [ hk(Uj). The idea is that the larger the size of a
set is, the smaller the expected value of the k-th element in hash is.
Using the results of [1], m(k�1)

hi,j [k]
is an unbiased estimator for [i,j .

Hence the estimation for \i,j is as provided in Equation 13.

E[\i,j ] =
k\(i, j)

k

m(k � 1)
hi,j [k]

(13)

Estimating [i,j with Equation 13, performs well when [i,j �
1 [1], i.e., the larger sets. Hence, we combine the threshold-based
and sketch-based algorithms to design the oracle SIM, as a hybrid
method that, based on the sizes of the rows A[i] and A[j], adopts
the threshold-based computation with sketch-based estimation for
computing the dot product of A[i] and A[j]. We consider log(m)
as the threshold to decide which strategy to adopt. Considering the
effectiveness of threshold based approaches when Ui and Uj are
small and, as a result, the two sets need a large overlap to have the
intersection larger than ⌧ , if |Ui| and |Uj | are less than log(m),
we choose the threshold-based intersection computation. However,
if the size of Ui or Uj is more then we use the bottom-k sketch,
while considering k to be log(m). For each element oj 2 U, we
set h(oj) = j. Hence, for each vector Ui the index of the first
log(m) elements in it are its bottom-k sketch. Using this strategy,
Algorithm 4 shows the pseudo code of the oracle SIM.

Given two given sets Ui and Uj (corresponding for the rows A[i]
and A[j]) together with the threshold ⌧ , the algorithm aims to com-
pute the value of \i,j , if it is larger than ⌧ . Combining the two
aforementioned methods, if |Ui| and |Uj | are more than a value ↵,
the algorithm uses sampling to estimate \i,j , otherwise it applies
the threshold-based method to compute it. During the sampling,

0 0.5 1 1.5 2 2.5
sorted pairs by flow value #104

0

1

2

3

4

5

6

flo
w

#107

(a) flow of all pairs

0 200 400 600 800 1000
sorted pairs by flow value

0

1

2

3

4

5

flo
w

#105

(b) flow of top 1000 pairs

Figure 6: Illustration of the flow passing through a network N3 in Ta-
ble 1

rather than sampling from U , the algorithm samples from Ui to re-
duce the underestimation of probability. In this case, in order to
compute \i,j , the algorithm, for each sample, picks a random ob-
ject from Ui and check its existence in Uj . It is easy to see it is
an unbiased estimator for \i,j , where its expected value is \i,j . If
|Ui| or |Uj | is less than ↵, the algorithms applies threshold-based
strategy for computing \i,j . As discussed earlier in this subsection,
in order for \i,j to be more than ⌧ , the subsets of size \i,j � ⌧ +1
should intersect. Hence, the algorithm first applies the threshold
filtering and only if the two subsets intersect it continues with com-
puting \i,j .
Algorithm 4 SIM
Input: the sets Ui and Uj , Threshold ⌧

Output: c
1: if |Ui| � log(m) and |Uj | � log(m) then
2: // apply bottom-k sketch based estimation

3: hi = the first k elements in Ui

4: hj = the first k elements in Uj

5: k\(i, j) = |hi \ hj |
6: hi,j [k] = the first k elements in hi [ hj

7: c = k\(i,j)
k

m(k�1)
hi,j [k]

8: else
9: // apply threshold-based estimation

10: c = 0
11: if |Ui| > |Uj | then swap Ui and Uj

12: � = |Ui|� ⌧

13: for k = 0 to � do
14: if Ui[k] 2 Uj then c = c+ 1
15: end for
16: if c = 0 then return 0
17: for k = � to |Ui|� 1 do
18: if Ui[k] 2 Uj then c = c+ 1
19: end for
20: end if
21: return c

Performance Analysis. Algorithm 3 has a time complexity of
O(n+ µ

2 min(l, log(m))), where µ = |{A[i]| |A[i]| � ⌧}|.

5. DISCUSSIONS

5.1 Identifying Top-k Components of Recon-
structed Signal

A natural extension to the signal reconstruction problem is to
identify the top-k components of the reconstructed signal. Of course,
a naive approach would use DIRECT to compute the signal X and
simply pick the top-k values. While top-k has been studied exten-
sively in the DB community, there has been a paucity of work in
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• Implementation: Matlab & Python2.7

• Synthetic Datasets: constructed as a random, Erdos-Renyi
graph(Networkx)

• P2P dataset from SANP dataset of Stanford 
• 10786 Nodes & 39994 Edges
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Figure 10: DIRECT v.s. baselines in N1 : n =
281 and m = 827

Direct WLSE QP
0

1

2

3

4

5

6

7

tim
e 

(s
ec

)

Figure 11: DIRECT v.s. baselines in N2 : n =
1, 278 and m = 9, 330
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Figure 12: DIRECT v.s. baselines in N3 : n =
1, 421 and m = 21, 058
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Figure 13: Execution time of DIRECT-E,
DIRECT-A (⌧=136), and DIRECT-A (⌧=1360)
in p2p-1
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Figure 14: Execution time of DIRECT-E,
DIRECT-A (⌧=373), and DIRECT-A (⌧=3737)
in p2p-2
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Figure 15: Execution time of DIRECT-
E, DIRECT-A (⌧=2067), and DIRECT-A
(⌧=20672) in p2p-3

6.3.2 Effectiveness of Similarity Join based approach
Having shown the superiority of DIRECT over the baselines, we

now evaluate the exact version of DIRECT (Algorithm 2) and its
approximate counterpart (Algorithm 3) that leverages techniques
from similarity joins to speed up the computation. We use DIRECT-
E to refer to the exact version of DIRECT and DIRECT-A for its
approximate version. Note that our algorithms take advantage of
the sparse representation of matrix A and can perform the linear
algebraic operations without materializing the entire matrix. We
also evaluate the performance of our algorithms to two different
threshold values of (m/1000) and (m/100), where m is num-
ber of source-destination pairs. Choosing an appropriate thresh-
old is often domain specific with larger thresholds providing better
speedups.

We compare the performance of the algorithms DIRECT-E and
DIRECT-A through two metrics : performance and accuracy. We
measure the former through execution time. We measure the accu-
racy of the signal reconstruction through bucketized error where
we bucketize the source-destination pairs by the exact value of
their flows and compute the error of the approximation algorithm
within each bucket. The bucketization is often more illuminating
for scenarios such as network traffic engineering where the sig-
nal exhibits a heavy tailed distribution and often the practitioner
is interested in accurately estimating large flows. After finding
the optimal flow assignments using the algorithm DIRECT-E, we
sort the source-destination pairs in descending order, based on the
amount of flow passing through them. For example, let a flow
assignment by DIRECT-E be {(SD1 : 3), (SD2 : 24), (SD3 :
7), (SD4 : 75), (SD5 : 5), (SD6 : 12)}. The sorted SD pairs
are {(SD4 : 75), (SD2 : 24), (SD6 : 12), (SD3 : 7), (SD5 :
5), (SD1 : 3)}. We then partition the SD pairs into 50 equal

size buckets (each bucket contains 2% of SD pairs5). In the pro-
vided example, assume that we partition them into 3 buckets B1 :
{(SD4 : 75), (SD2 : 24)}, B2 : {(SD6 : 12), (SD3 : 7)}, and
B3 : {(SD5 : 5), (SD1 : 3)}. For every SD pair, we consider
the difference between the values computed by DIRECT-A and the
one by DIRECT-E as the error of that SD pair, and compute the av-
erage for each bucket. In our example, let {(SD1 : 5), (SD2 :
24), (SD3 : 6), (SD4 : 79), (SD5 : 5), (SD6 : 11)} be the as-
signed values by DIRECT-A. Then the average errors for the buck-
ets B1, B2, and B3 are 2, 1, and 1, respectively. It was observed
in [16, 43] that for many tasks in network traffic engineering such
as routing optimization, even a relative error of few 10s of percent
is considered tolerable. As we shall show later, our algorithms of-
ten achieve substantially lower errors while providing results in a
handful of seconds.
p2p-1 (136K Source-Destination pairs) Figure 13 shows the com-
parative performance of the exact and approximate version of DI-
RECT. DIRECT-E takes almost 30 seconds in computing the exact
solution while DIRECT-A with threshold = 1360 was able to pro-
duce answers in less than 3 seconds. Furthermore, we observed
that running DIRECT-A for 20 seconds provides the same solution
as DIRECT-E. Figure 16 shows the quality of solution provided by
DIRECT-A. We can see that the solution provided by DIRECT-A is
very close to that of DIRECT-E even though the former provided a
90% time savings for a mid sized network. As expected, increasing
the threshold results in a significant speedup.
p2p-2 (373K Source-Destination pairs) This network has 373K
source-destination pairs with 3486 edges sampled form the SNAP
p2p dataset. This network is twice as big as the previous network.

5We have found out the knee point of the cumulative flow is around
2%.
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Figure 15: Execution time of DIRECT-
E, DIRECT-A (⌧=2067), and DIRECT-A
(⌧=20672) in p2p-3

6.3.2 Effectiveness of Similarity Join based approach
Having shown the superiority of DIRECT over the baselines, we

now evaluate the exact version of DIRECT (Algorithm 2) and its
approximate counterpart (Algorithm 3) that leverages techniques
from similarity joins to speed up the computation. We use DIRECT-
E to refer to the exact version of DIRECT and DIRECT-A for its
approximate version. Note that our algorithms take advantage of
the sparse representation of matrix A and can perform the linear
algebraic operations without materializing the entire matrix. We
also evaluate the performance of our algorithms to two different
threshold values of (m/1000) and (m/100), where m is num-
ber of source-destination pairs. Choosing an appropriate thresh-
old is often domain specific with larger thresholds providing better
speedups.

We compare the performance of the algorithms DIRECT-E and
DIRECT-A through two metrics : performance and accuracy. We
measure the former through execution time. We measure the accu-
racy of the signal reconstruction through bucketized error where
we bucketize the source-destination pairs by the exact value of
their flows and compute the error of the approximation algorithm
within each bucket. The bucketization is often more illuminating
for scenarios such as network traffic engineering where the sig-
nal exhibits a heavy tailed distribution and often the practitioner
is interested in accurately estimating large flows. After finding
the optimal flow assignments using the algorithm DIRECT-E, we
sort the source-destination pairs in descending order, based on the
amount of flow passing through them. For example, let a flow
assignment by DIRECT-E be {(SD1 : 3), (SD2 : 24), (SD3 :
7), (SD4 : 75), (SD5 : 5), (SD6 : 12)}. The sorted SD pairs
are {(SD4 : 75), (SD2 : 24), (SD6 : 12), (SD3 : 7), (SD5 :
5), (SD1 : 3)}. We then partition the SD pairs into 50 equal

size buckets (each bucket contains 2% of SD pairs5). In the pro-
vided example, assume that we partition them into 3 buckets B1 :
{(SD4 : 75), (SD2 : 24)}, B2 : {(SD6 : 12), (SD3 : 7)}, and
B3 : {(SD5 : 5), (SD1 : 3)}. For every SD pair, we consider
the difference between the values computed by DIRECT-A and the
one by DIRECT-E as the error of that SD pair, and compute the av-
erage for each bucket. In our example, let {(SD1 : 5), (SD2 :
24), (SD3 : 6), (SD4 : 79), (SD5 : 5), (SD6 : 11)} be the as-
signed values by DIRECT-A. Then the average errors for the buck-
ets B1, B2, and B3 are 2, 1, and 1, respectively. It was observed
in [16, 43] that for many tasks in network traffic engineering such
as routing optimization, even a relative error of few 10s of percent
is considered tolerable. As we shall show later, our algorithms of-
ten achieve substantially lower errors while providing results in a
handful of seconds.
p2p-1 (136K Source-Destination pairs) Figure 13 shows the com-
parative performance of the exact and approximate version of DI-
RECT. DIRECT-E takes almost 30 seconds in computing the exact
solution while DIRECT-A with threshold = 1360 was able to pro-
duce answers in less than 3 seconds. Furthermore, we observed
that running DIRECT-A for 20 seconds provides the same solution
as DIRECT-E. Figure 16 shows the quality of solution provided by
DIRECT-A. We can see that the solution provided by DIRECT-A is
very close to that of DIRECT-E even though the former provided a
90% time savings for a mid sized network. As expected, increasing
the threshold results in a significant speedup.
p2p-2 (373K Source-Destination pairs) This network has 373K
source-destination pairs with 3486 edges sampled form the SNAP
p2p dataset. This network is twice as big as the previous network.

5We have found out the knee point of the cumulative flow is around
2%.
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Figure 16: Absolute Error of the DIRECT-A (τ = 1360) in p2p-1

one by DIRECT-E as the error of that SD pair, and compute the av-
erage for each bucket. In our example, let {(SD1 : 5), (SD2 :
24), (SD3 : 6), (SD4 : 79), (SD5 : 5), (SD6 : 11)} be the as-
signed values by DIRECT-A. Then the average errors for the buck-
ets B1, B2, and B3 are 2, 1, and 1, respectively. It was observed
in [16, 43] that for many tasks in network traffic engineering such
as routing optimization, even a relative error of few 10s of percent
is considered tolerable. As we shall show later, our algorithms of-
ten achieve substantially lower errors while providing results in a
handful of seconds.

p2p-1 (136K Source-Destination pairs) Figure 13 shows the com-
parative performance of the exact and approximate version of DI-
RECT. DIRECT-E takes almost 30 seconds in computing the exact
solution while DIRECT-A with threshold = 1360 was able to pro-
duce answers in less than 3 seconds. Furthermore, we observed
that running DIRECT-A for 20 seconds provides the same solution
as DIRECT-E. Figure 16 shows the quality of solution provided by
DIRECT-A. We can see that the solution provided by DIRECT-A is
very close to that of DIRECT-E even though the former provided a
90% time savings for a mid sized network. As expected, increasing
the threshold results in a significant speedup.

p2p-2 (373K Source-Destination pairs) This network has 373K
source-destination pairs with 3486 edges sampled form the SNAP
p2p dataset. This network is twice as big as the previous network.
While DIRECT-E takes about 90 seconds for computing the ex-
act solution, our approximate algorithm with threshold=3737 com-
putes the result within 5 seconds. Figure 14 shows the performance
gain is much as 90%. Furthermore, the execution time of this al-
gorithm is fast enough to be interactive even for large enough net-
works. Figure 17 shows that the improved performance did not
result in a large error. Instead, the bucketized error is quite small.

p2p-3 (2M Source-Destination pairs) This network has 2M source-
destination pairs with 7081 edges sampled form the SNAP p2p
dataset. Figure 15 we can see that DIRECT-E takes much as 1500
seconds to compute the exact solution. This is often prohibitive and
simply unacceptable for many traffic engineering tasks. However,
our approximate algorithms can provide the result in as little as 35
seconds. This is a significant reduction in execution time with a
speedup of much as 97% of the running time of DIRECT-E. Fig-
ure 18 shows that the results are very close to the exact answer
produced by DIRECT-E.
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Figure 17: Absolute Error of the DIRECT-A (τ = 3737) in p2p-2
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Figure 18: Absolute Error of the DIRECT-A (τ = 20672) in p2p-3

7. RELATED WORK

Traffic Matrix Computation from Link Loads: The problem of
inference of traffic matrices in IP networks from link load measure-
ments and routing configuration information has been extensively
studied [40, 43]. See [32] for a survey of commonly used tech-
niques. These include formulating SRP as a linear or quadratic pro-
gramming problem [18], using Bayesian inference techniques [37],
statistical likelihood methods such as Expectation-Maximization [7]
weighted least squares [43], regularization based entropy penaliza-
tion [44] using convex optimization theory etc. Note that one can-
not use Compressive Sensing (CS) [6] to solve SRP due to two
reasons. Compressive Sensing efficiently approximates the ℓ0 loss
function by ℓ1 loss function when one has the prior knowledge that
the signal is sparse. However, in many application scenarios one
often has even more additional knowledge such as the prior x′. In-
corporating an arbitrary (possibly non sparse) prior into CS is non-
trivial. None of these methods can scale for large communication
networks and provide results in a near interactive fashion.

Linear Algebraic Techniques for Solving SRP: There has been
extensive work on solving the system of linear equations using a
wide variety of techniques such as computing the pseudoinverse

N = 1,438 m = 2M
Threshold = 20673


