Leveraging Similarity Joins for Signal Reconstruction

Abolfazl Asudeh | Azade Nazi |Jees Augustine | Saravanan Thirumuruganathan |
Nan Zhang | Gautam Das | Divesh Srivastava

Motivation

Problem Formulation

Contribution

Algorithms
Experiments \& Evaluation

Motivation

Problem Formulation

Contribution

Algorithms

Experiments \& Evaluation

Motivation

Given any traffic routing matrix and aggregated link level flow information, can we effectively infer the individual flow values $\left(\mathrm{S}_{1} \mathrm{D}_{1}, \mathrm{~S}_{1} \mathrm{D}_{2}, \ldots \mathrm{~S}_{3} \mathrm{D}_{3}\right)$?

Scope of Problem High Dimensional Signal

3 D image reconstruction from 2 D images

Accurate temperature estimate from limited temperature sensors

Motivation

Problem Formulation

Contribution

Algorithms
Experiments \& Evaluation

Problem Representation

Signal Reconstruction Problem(SRP)

$\mathcal{A} \cdot \mathcal{X} \rightarrow b$

Existing Solutions

- Compressive Sensing
- Assume that most of signal elements are zeros(0), this sparsity could lead to reconstruction with fewer samples
- Large Time requirement
- Large error in answers

$A \cdot \mathcal{X} \rightarrow h$

Can we do better with some prior information about the signal !

Visual Representation

$$
\begin{gathered}
\min \left\|X-X_{\text {prior }}\right\|_{2} \\
\text { s.t. } A X=b
\end{gathered}
$$

Motivation

Problem Formulation

Contribution

Algorithms

Experiments \& Evaluation

Contributions

- Derived the Lagrangian Dual form of the problem and proposed DIRECT-Exact algorithm
- Identified computational bottleneck
- Leveraged Database techniques for Optimized DIRECT-Approximate as a scalable solution using set similarity join techniques
- Performed Extensive Experiments to confirm the efficiency and accuracy

Motivation

Problem Formulation

Contribution

Algorithms

Experiments \& Evaluation

Lagrangian Dual Expression

- Any general optimization problem in the form of

$$
\begin{aligned}
& \min f(X) \\
& \text { s.t. } g(X)=b
\end{aligned}
$$

- Can be rewritten as

$$
L(X, \lambda)=f(X)+\lambda^{T}(g(X)-b)
$$

$$
L(X, \lambda)=\frac{1}{2} X^{T} X-X^{\prime T} X+\lambda^{T}(A X-b)
$$

Direct

Optimizing computation of $A A^{\top}$

- Sparse representation of $A \& A^{\top}$

	1	2	3	4	5	6
0	0	1	0	0	1	0
0	1	0	0	0	0	0
0	0	0	1	0	1	1
1	0	0	0	1	0	0

$\langle 3,6\rangle$
$\langle 2\rangle$
$\langle 4,6,7\rangle$
$\langle 1,5\rangle$

Approximation: Trading off Accuracy with Efficiency

Bounding Values in AA^{T}

AA ${ }^{T}$ Small number of entries take bulk of the values

Threshold based on the diagonal values

Direct Approx - Threshold Based

Matrix Multiplication

Matrix Multiplication

\square

Set Similarity Joins

Set Similarity

- Used - data cleaning, deduplication, product recommendation
- Identify tuples, which are 'close enough', on multiple attributes

Designed Algorithm SIM

Threshold Based - Set Similarity Join

- Surajit Chaudhuri et.al.
- If intersection of two sets are large
- Intersection of small subsets of them are non-zero

$$
\mathbf{h}-\tau+\mathbf{1}
$$

Sketch Based - Set Similarity Join

- Uses Min-hashing
- Use a random ordering of all items in universe
- Min-hash = element with the minimum hash value
- Jaccard Similarity of two sets A and $\mathrm{B}, \mathrm{J}(\mathrm{A}, \mathrm{B})=\frac{|A \cap B|}{|A \cup B|}$

$$
\mathrm{P}(\mathrm{~h}[\mathrm{~A}]=\mathrm{h}[\mathrm{~B}])=\mathrm{J}(\mathrm{~A}, \mathrm{~B})
$$

Sketch Based - Set Similarity Join

- Bottom-k sketch
- Uses only first k elements of the hash
- Works well for large size sets

Algorithm SIM

$$
\begin{aligned}
& \text { if }\left|U_{i}\right| \geq \log (m) \text { and }\left|U_{j}\right| \geq \log (m) \text { then } \\
& \quad \text { apply bottom- } k \text { sketch based estimation } \\
& \text { else } \quad E\left[\cap_{i, j}\right]=\frac{k_{\cap}(i, j)}{k} \frac{m(k-1)}{h_{i, j}[k]} \\
& \text { _ent }
\end{aligned}
$$

apply threshold-based estimation

Motivation

Problem Formulation

Contribution

Algorithms

Experiments \& Evaluation

UT FRLIMTIT

Experiments \& Evaluation

Evaluation Setup

- Implementation: Matlab \& Python2.7
- Synthetic Datasets: constructed as a random, Erdos-Renyi graph(Networkx)
- P2P dataset from SANP dataset of Stanford
- 10786 Nodes \& 39994 Edges

Direct VS Baselines

Direct-Exact VS Direct-Approximate

Edges $=1,438, S D=2$ Million

Direct-Exact VS Direct-Approximate

