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Given any traffic routing matrix and aggregated link
level flow information, can we effectively infer the
individual flow values( )?
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wranunstan— Scope of Problem High Dimensional Signal

1 3D image reconstruction from 2D images

2 Accurate temperature estimate from limited temperature sensors
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4 RRLINGTON Signal Reconstruction Problem(SRP)

A-X — b

X: SD Traftic Vector =
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* Compressive Sensing

« Assume that most of signal elements are zeros(0), this sparsity
could lead to reconstruction with fewer samples

* Large Time requirement
« Large error in answers

A. X —s h

[Can we do better with some prior information about the signal ! }




Visual Representation
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e Derived the Lagrangian Dual form of the problem and proposed
DIRECT-Exact algorithm

* |dentified computational bottleneck

* Leveraged Database techniques for Optimized DIRECT-Approximate as
a scalable solution using set similarity join techniques

* Performed Extensive Experiments to confirm the efficiency and
accuracy
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* Any general optimization problem in the form of
min f(X)

st. g(X)=10

e Can be rewritten as

L(X,\) = f(X) + A" (g(X) — b)

[ L(X,)\) = %XTX —~ X" X + M (AX - b) }
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Optimizing computation of AA!

* Sparse representation of A & Al

1 2 3 4 5 6 7

olo|1|lo0|lo|1]0 <3,6>
o|l1/0|lo|lo|lo0]oO <2>
olo|o|1|l0|1]|1 <4,6,7>
1/o0lo0|0|1]0]0 <1,5>
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Approximation: Trading off
Accuracy with Efficiency
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C Bounding Values in AA!

AAT Small number of entries take bulk of the values

T hreshold based on the diagonal values
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Set Similarity Joins
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Set Similarity

* Used - data cleaning, deduplication, product recommendation

* |[dentify tuples, which are ‘close enough’, on multiple attributes

Designed Algorithm SIM
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Threshold Based — Set Similarity Join

 Surajit Chaudhuri et.al.

* |f intersection of two sets are large
e |ntersection of small subsets of them are non-zero

h-t+1
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Sketch Based - Set Similarity Join

* Uses Min-hashing

e Use a random ordering of all items in universe

e Min-hash = element with the minimum hash value

AN B
|A U B

 Jaccard Similarity of two sets A and B, J(A, B) =

P(h[A] =h[B]) = J(A, B)
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e Bottom-k sketch

* Uses only first k elements of the hash

* Works well for large size sets



A

UT RARLINDGTON

Algorithm SIM

if |U;| > log(m) and |U;| > log(m) then

apply bottom—k sketch based estimation

else

apply threshold-based estimation
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KEvaluation Setup

* Implementation: Matlab & Python2.7

e Synthetic Datasets: constructed as a random, Erdos-Renyi
graph(Networkx)

e P2P dataset from SANP dataset of Stanford
10786 Nodes & 39994 Edges
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Direct-Exact VS Direct-Approximate
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